CH: Chemical Engineering
Section
1: Engineering Mathematics
Linear
Algebra: Matrix algebra, Systems of linear equations, Eigen
values and eigenvectors.
Calculus: Functions of single variable, Limit,
continuity and differentiability, Taylor series, Mean value theorems, Evaluation of definite and improper
integrals, Partial derivatives, Total derivative, Maxima and minima, Gradient, Divergence and Curl, Vector
identities, Directional derivatives, Line, Surface and Volume integrals, Stokes, Gauss and Green’s
theorems.
Differential
equations: First order equations (linear and nonlinear),
Higher order linear differential
equations with constant coefficients, Cauchy’s and
Euler’s equations, Initial and boundary value problems, Laplace transforms, Solutions of one dimensional
heat and wave equations and Laplace equation.
Complex
variables: Complex number, polar form of complex number,
triangle inequality.
Probability
and Statistics: Definitions of probability and sampling
theorems, Conditional probability, Mean, median, mode and standard deviation, Random
variables, Poisson, Normal and Binomial distributions, Linear regression analysis.
Numerical
Methods: Numerical solutions of linear and non-linear
algebraic equations. Integration by trapezoidal and Simpson’s rule. Single and
multi-step methods for numerical solution of differential equations.
Section
2: Process Calculations and Thermodynamics
Steady and unsteady state mass and energy balances
including multi-phase, multi- component, reacting and non-reacting systems. Use of tie components;
recycle, bypass and purge calculations; Gibbs phase rule and degree of freedom analysis.
First and Second laws of thermodynamics.
Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure
substances: Equation of State and residual properties, properties of mixtures: partial molar properties,
fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical
reaction equilibrium.
Section
3: Fluid Mechanics and Mechanical Operations
Fluid statics, Newtonian and non-Newtonian fluids,
shell-balances including differential form of Bernoulli equation and energy balance, Macroscopic friction
factors, dimensional analysis and similitude, flow through pipeline systems, flow meters, pumps and
compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized
beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.
Particle size and shape, particle size distribution,
size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones;
thickening and classification, filtration, agitation and mixing; conveying of solids.
Section
4: Heat Transfer
Steady and unsteady heat conduction, convection and
radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation;
types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell
and tube heat exchangers, and single and multiple effect evaporators.
Section
5: Mass Transfer
Fick’s laws, molecular diffusion in fluids, mass
transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer
analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation
of equipment for distillation, absorption, Leaching, liquid-liquid extraction, drying,
humidification, dehumidification and adsorption.
Section
6: Chemical Reaction Engineering
Theories of reaction rates; kinetics of homogeneous
reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal
reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous
catalytic reactions; diffusion effects in catalysis.
Section
7: Instrumentation and Process Control
Measurement of process variables; sensors,
transducers and their dynamics, process modeling and
linearization, transfer functions and dynamic
responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and
PID); control valves; analysis of closed loop systems including stability, frequency response, controller
tuning, cascade and feed forward control.
Section
8: Plant Design and Economics
Principles of process economics and cost estimation
including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted
cash flow, optimization in process design and sizing of chemical engineering equipments such as compressors,
heat exchangers, multistage contactors.
Section
9: Chemical Technology
Inorganic chemical industries (sulfuric acid,
phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries
(Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries
(polyethylene, polypropylene, PVC and polyester synthetic fibers).
CLICK HERE TO DOWNLOAD PDF
Thankyou for this syllabus
ReplyDeleteYou are always welcome! Stay with us to get regular updates.
Delete